Luther12
Elder Lister
Amid the complex web of international trade, proving the authenticity of a product can be near-impossible. But one company is taking the search to the atomic level.
Five years ago, the textile giant Welspun found itself mired in a scandal that hinged on a single word: “Egyptian”. At the time, Welspun was manufacturing more than 45m metres of cotton sheets every year – enough to tie a ribbon around the Earth and still have fabric left over for a giant bow. It supplied acres of bed linen to the likes of Walmart and Target, and among the most expensive were those advertised as “100% Egyptian cotton”. For decades, cotton from Egypt has claimed a reputation for being the world’s finest, its fibres so long and silky that it can be spun into soft, luxurious cloth. In Welpsun’s label, the word “Egyptian” was a boast and a promise.
But the label couldn’t always be trusted, it turned out. In 2016, Target carried out an internal investigation that led to a startling discovery: roughly 750,000 of its Welspun “Egyptian cotton” sheets and pillowcases were made with an inferior kind of cotton that didn’t come from Egypt at all. After Target offered its customers refunds and ended its relationship with Welspun, the effects rippled through the industry. Other retailers, checking their bed linen, also found Welspun sheets falsely claiming to be Egyptian cotton. Walmart, which was sued by shoppers who had bought Welspun’s “Egyptian cotton” products, refused to stock Welspun sheets any more. A week after Target made its discoveries public, Welspun had lost more than $700m from its market value. It was cataclysmic for the company.
Blindsided, Welspun struggled to understand what had gone wrong, but working that out wasn’t easy. The cotton business is labyrinthine, and the supply chains of products – running from the source farm to the shop shelf – have grown increasingly complex. A T-shirt sold in New Delhi might be made of cotton grown in India, blended with other cotton from Australia, spun into yarn in Vietnam, woven into cloth in Turkey, sown and cut in Portugal, bought by a Norwegian company and shipped back to India – and that’s a relatively simple supply chain. For years, Welspun had been buying raw cotton, yarn and whole cloth, all claiming to be of Egyptian origin, from dozens of vendors. The source of the fiasco might have been a mistake – a mislabelled shipment of cotton yarn, perhaps – or it might have been deliberate fraud by some remote supplier. Either way, it was lost in the maze.
In the thick of its crisis, Welspun sought out a company named Oritain. Founded in 2008, in the town of Dunedin in New Zealand, Oritain is a kind of forensic detective agency – a supply-chain CSI. Its work, which takes us into the heart of modern commerce, depends upon a basic truth about our planet. The Earth is so geologically diverse that, in a location’s soil or water, the precise concentrations of elements often turns out to be unique to that region. That singular mix of elements works its way into the crops from the region as well, so that cotton grown in the south of the US has a different combination of elements compared to cotton from Egypt – each combination distinct, like a signature.
Prof Russell Frew, the geochemist who co-founded Oritain, had been studying element analysis at the University of Otago when he recognised how his research could address a major commercial problem. Fraudulent products sit on shop shelves everywhere. When they’re detected, they trigger fierce controversies, like the time in 2013, when British and Irish authorities found horse meat liberally mixed into “beef” patties. But for every headline-grabbing deception, there are countless unnoticed ones. Sugar syrup is blended into organic honey. “New Zealand lamb chops” come from Chinese feedlot animals; extra virgin olive oil is cut with cheap, inferior oil; T-shirts are stitched out of cotton grown on forced-labour farms. Labels often lie. The counterfeit food game alone is worth $49bn a year.
The central stem of a cotton stem seen under a light micrograph. Photograph: Steve Gschmeissner/Getty/Science Photo Library RF
These deceits, Frew realised, could be sniffed out by element analysis: hence Oritain. The company’s clients include well known brands such as Primark, but also industry bodies such as Cotton USA and Meat Promotion Wales. All of them are keen to avoid nasty surprises of the kind that Welspun experienced, the kind that can burn up the bottom line or sink a range of products – the low-quality supermarket steak masquerading as prime Welsh beef, say, or the pair of socks that turns out to be made with cotton from Xinjiang, in China, where factories are suspected of using captive labour.
Oritain promises to determine with 95% accuracy if a coffee bean or a cut of meat is really from the source advertised on its label. Some items are easier to analyse than others. “Tea is a good one – it’s very rich in the elements we measure,” Frew told me. “We can distinguish between two tea estates that just have a dirt road between them.” But really, he added, anything that was once grown or reared will hold signs of its origins, its chemical terroir. With enough data, it will reveal the truth about where it’s from – and the lies in the tale being told about it.
Even as a boy, Frew knew the commercial worth of an origin story. Now 54, he has the fulfilled air of a scientist who’s made it as an entrepreneur. He grew up on a sheep farm in southern New Zealand owned by his grandfather, and although the meat was useful, it was really the wool that made money. “Back then, New Zealand wool was incredibly valuable,” Frew said. “In 1953, it sold for a pound per pound.” But by the time Frew went to university in the 1980s, the industry had collapsed, in part because of the popularity of cheap, swiftly made synthetic fibres. It felt like a lesson: even a product as fine and scrupulously sourced as New Zealand wool could be left behind by the quickening pace of the global economy.
As a young researcher at the University of Otago, Frew studied how the distribution of elements varied across the world’s oceans. The instrument he most relied on was the mass spectrometer, a machine that occupied half a room and measured the levels of different elements in any sample he fed intoit. If Frew had, say, a beaker of water collected off the coast of Brazil, the spectrometer could record the specific mix of metals and salts that had washed off the land into that part of the ocean. And if he found that unique signature elsewhere, he could know that the water off Brazil had moved around the world in an ocean current. Once, when he tested some water recovered from a depth of 5,000 metres in the channel between Britain and Greenland, he found that it had started from the Weddell Sea off Antarctica.
Throughout the 90s, as Frew ran marine chemistry projects at his university, his instruments kept improving. He could buy not just new plasma spectrometers, which could test for 45 elements at once, he told me, but also better bottle-washing equipment. When I laughed, Frew said: “I’m not kidding. The new tech was basically a big bucket of ultra-pure acid, which stripped off all the trace element impurities on the glass.” From that time on, he no longer had to worry about his samples being contaminated.
In 2001, New Zealand’s ministry of fisheries contacted Frew. They’d nabbed a couple of fishing boats registered to South Korean companies, and although the crews had permits to fish off New Zealand’s east coast, the ministry suspected they’d been trawling in western waters instead. The boats’ holds were brimming with hake. Was there a way to tell where they’d been caught? “The west coast is ancient rock,” Frew told me, “and there’s a disparity in how much dust blown over from Australia settles on one coast versus the other.” As a result, the levels of lead in water and marine life vary slightly from west to east. To appraise the ratios of lead in the hake, Frew had to fly to Boston to use a lab’s instruments there. “Lead was the smoking gun,” he said. The boats had been fishing illegally in New Zealand’s western waters after all. “That turned out to be a NZ$5m prosecution.”
“The Korean fish case,” as Frew calls it, was the story he told to get funding – from his university to buy equipment for his lab, or from investors to set up his first company, Isotrace, or from more investors for Oritain, which he set up after Isotrace folded. Oritain pitched itself not as a lab with forensic tools, but as a guardian of brand integrity. If a company’s high-end coffee or single-origin chocolate were actually being made with sub-par beans, and if that ever came to light, the company’s reputation, and its bottom line, would be destroyed. In 1993, Domenico Ribatti, one of Italy’s largest olive oil producers, was sentenced to prison for cutting his extra-virgin with Turkish hazelnut oil and Argentinian sunflower-seed oil. A decade ago, Noka Chocolate went out of business not long after a blogger reported that Noka was buying another company’s chocolate, presenting it as “a tasting experience” sourced from Venezuela or Ivory Coast, and selling it for 10 times the price at Neiman Marcus. And in 2019, French police announcedthat they uncovered a scam in which 15,000 tonnes of Italian kiwifruit had been passed off as the superior French kind.
Olive oil is an often-adulterated commodity. Photograph: Kristian Septimius Krogh/Getty
Companies that fake their own wares are unusual. More commonly, raw materials get accidentally mixed up as they make their way through supply chains, or dubious third parties pass off low-grade goods as high-quality products. Oritain’s first-ever client, a New Zealand firm called Silver Fern Farms, had just this problem.
Silver Fern sources beef from farms that rear grass-fed cows in New Zealand and then sells the meat at a premium price in supermarkets in other countries, including China. But Silver Fern doesn’t deal directly with these supermarkets, of course. In between Silver Fern’s headquarters in Dunedin and a Beijing supermarket lie numerous intermediaries: firms that import packaged Silver Fern beef into China, for instance, or that distribute the beef to supermarkets in a particular region. This is, quite sensibly, the framework for most modern business – each task handled by a company that does just that and does it well.
But this multiplicity of actors also leaves room for swindlers. In China, someone was wrapping up cuts of cheap local beef in fake Silver Fern packaging and selling them to supermarkets for a plump profit. Perhaps they were importers working with Silver Fern or posing as distributors claiming to have stocks of Silver Fern beef. But the end result was the same: shoppers paying more for meat they thought was scrupulously sourced but wasn’t.
Oritain’s assignment was to conduct random checks on “Silver Fern” packaged beef bought from Chinese supermarkets, testing the meat to see if it truly originated in Silver Fern’s farms, trying to narrow down how the fakes were turning up. Silver Fern knew the hazards of letting this fraud go on unchecked. In a culture that has chosen to care, even obsess, about authenticity, phoney products can tip a company into an irreversible fall.
In its earliest days, element analysis wasn’t often used to settle questions of origin. Instead, archaeologists measured elements to piece together the diets of long-dead humans in ancient graves, and the EU’s wine databank, set up in 1991, assayed the element ratios in wine to see if it had been “sugared” or watered down. Only around the turn of the 21st century did scientists start employing these tools to discover where materials came from. The real breakthrough came in a case involving not cocoa fraud or mislaid cotton, but the unsolved murder of a little boy.
In 2001, a pedestrian on Tower Bridge spotted a body in the Thames, although in the tricky light of a September evening, he mistook it for a barrel. Then he recognised his error and rang the police. Twenty minutes later, a patrol boat arrived to scoop the body out of the water. Someone had cut the head and limbs off the boy, and the torso wore only a pair of fluorescent orange shorts. When Will O’Reilly, a detective inspector with the Metropolitan police, was called in, he recalled other bodies from the Thames that he’d seen, several mangled by boat propellers. But after he saw the torso, he realised this was something he’d never encountered before.
Postmortems supplied one gruesome mystery after another. The child, between five and seven years old, had no blood remaining in his body. His stomach was empty, as if he’d been starved for days. The body was cut up in such precise, unusual ways that the surmise of a ritual sacrifice emerged in the very first postmortem. But none of this solved the essential question of who the boy was and where he’d come from. O’Reilly had no fingerprints or dental records to examine. Running the boy’s DNA through a database showed no relatives in the UK. Gene sequences suggested that he was of northern or western African descent, but they couldn’t spell out when he had last been in that part of the world, or if he’d ever been there at all. He was so profoundly, tragically anonymous that the police investigators called him Adam, to accord him the dignity of a name.
Half a century ago, the case would have stalled there, but in early 2002, a geology professor gave the police an idea. If the elements in the soil and water of a region work their way into the plants grown there, they also work their way into our bodies when we eat the produce of those plants, or when we eat the meat of animals fed on those plants. We ingest these elements, process them, and use them to build flesh, teeth and bones. So the elements making up our bodies can tell us something about the food we’ve eaten and the land that supports us. All of us are composites of what we consume, the geologist said. Perhaps this science might reveal where Adam was from?
In Adam’s bones, the concentrations of the elements strontium and neodymium suggested that he had spent most of his life in west Africa – possibly in Nigeria, or parts of Benin or Cameroon. To refine their search, O’Reilly and two colleagues travelled through Nigeria to take samples, covering 17,000 miles in three weeks. “We’d go out to the middle of farmers’ fields and collect soils and rock,” O’Reilly told me. “We got bone samples from mortuaries. We bought bush meat being sold by the side of the road.” Of the 150 or so samples they brought back, the nearest match to Adam’s strontium-neodymium levels came from human remains from a mortuary in Benin City, in southern Nigeria. Adam had lived most of his brief life in this rough vicinity, geologists suggested. The local police began making inquiries, asking people if they knew a boy who’d travelled to England, or if they recognised his pair of bright orange shorts.
A Nigerian woman came forward claiming to have known the boy, but her story kept changing and there were serious doubts about her reliability. No definitive evidence of Adam’s real identity was ever found, and the case remains unsolved. But the element analysis that led O’Reilly to western Africa turned out to be a pioneering piece of forensic research – reviewed in scientific journals, written up in textbooks, discussed at conferences. Oritain traces its methods directly back to the “Torso in the Thames” investigation. “That was a landmark case,” Rupert Hodges, Oritain’s chief commercial officer, told me. “We adapted the forensic science that came out of that case, and out of similar cases like it.”
The life and death of Adam bore strange, sad resemblances to the corrupted supply chains that warrant Oritain’s attentions. Here was a boy who was transferred frictionlessly from one continent to another, as if reduced to a commodity – a boy whose blurred origins and unresolved end were reminders that, while our globalised world pretends to be small and transparent, it is in fact huge and murky, with plenty of room to hide.
When Welspun came to Oritain, in the wake of its scandal, it was already too late to detect precisely where the mistakes had been made. The inferior cotton had passed through Welspun’s factories, been made into bedsheets, sold, and been slept upon. What Welspun wanted was to reassure its retailers that such a debacle couldn’t happen again. “They basically said to us: ‘How do we get back into the good graces of these big-box stores?’” Hodges told me.
Hodges is a bespectacled Englishman, a former banker who talks torrentially fast; more than once, while listening to our recorded conversations, I checked to see if I was accidentally playing them at 2x. Hodges joined Oritain in 2014, going from managing 1,000 people to running a London office of one. When Welspun ran into trouble two years later, Oritain was hired to conduct regular audits on the company’s supply chain.
To do that, though, Oritain needed to know the elemental signatures of Welspun’s cotton. So Oritain’s staff began by travelling to Egypt, fanning out across all the farms that supplied Welspun, picking “master samples” of cotton, and placing them into clear plastic bags. Then they did the same in the US, Australia, and every other country from which Welspun sourced cotton. The entire effort took six months, Hodges said, and resulted in tens of thousands of master samples.
Using these for comparison, Oritain could authenticate Welspun’s bales, yarn and fabric to make certain that no one was swapping in one kind of cotton for another. Shuttling between the various, far-flung tiers of suppliers, shippers, traders and factories, Oritain sampled and tested and sampled and tested, to ensure that every bit of cotton showed the elemental signatures of its origin – that cotton claiming to be from an Egyptian farm really was from that Egyptian farm. It was a way to make the supply chain more watertight, more reliable. In May 2021, Target agreed to start stocking Welspun products again.
Oritain has an ever-expanding library of master samples – verified specimens of beef, apples, cotton, wool and other commodities taken from their source farms, orchards or abattoirs. Hundreds of thousands of such samples rest in clear plastic bags in a warehouse in the basement of Oritain’s office building in Dunedin, in southern New Zealand....
Five years ago, the textile giant Welspun found itself mired in a scandal that hinged on a single word: “Egyptian”. At the time, Welspun was manufacturing more than 45m metres of cotton sheets every year – enough to tie a ribbon around the Earth and still have fabric left over for a giant bow. It supplied acres of bed linen to the likes of Walmart and Target, and among the most expensive were those advertised as “100% Egyptian cotton”. For decades, cotton from Egypt has claimed a reputation for being the world’s finest, its fibres so long and silky that it can be spun into soft, luxurious cloth. In Welpsun’s label, the word “Egyptian” was a boast and a promise.
But the label couldn’t always be trusted, it turned out. In 2016, Target carried out an internal investigation that led to a startling discovery: roughly 750,000 of its Welspun “Egyptian cotton” sheets and pillowcases were made with an inferior kind of cotton that didn’t come from Egypt at all. After Target offered its customers refunds and ended its relationship with Welspun, the effects rippled through the industry. Other retailers, checking their bed linen, also found Welspun sheets falsely claiming to be Egyptian cotton. Walmart, which was sued by shoppers who had bought Welspun’s “Egyptian cotton” products, refused to stock Welspun sheets any more. A week after Target made its discoveries public, Welspun had lost more than $700m from its market value. It was cataclysmic for the company.
Blindsided, Welspun struggled to understand what had gone wrong, but working that out wasn’t easy. The cotton business is labyrinthine, and the supply chains of products – running from the source farm to the shop shelf – have grown increasingly complex. A T-shirt sold in New Delhi might be made of cotton grown in India, blended with other cotton from Australia, spun into yarn in Vietnam, woven into cloth in Turkey, sown and cut in Portugal, bought by a Norwegian company and shipped back to India – and that’s a relatively simple supply chain. For years, Welspun had been buying raw cotton, yarn and whole cloth, all claiming to be of Egyptian origin, from dozens of vendors. The source of the fiasco might have been a mistake – a mislabelled shipment of cotton yarn, perhaps – or it might have been deliberate fraud by some remote supplier. Either way, it was lost in the maze.
In the thick of its crisis, Welspun sought out a company named Oritain. Founded in 2008, in the town of Dunedin in New Zealand, Oritain is a kind of forensic detective agency – a supply-chain CSI. Its work, which takes us into the heart of modern commerce, depends upon a basic truth about our planet. The Earth is so geologically diverse that, in a location’s soil or water, the precise concentrations of elements often turns out to be unique to that region. That singular mix of elements works its way into the crops from the region as well, so that cotton grown in the south of the US has a different combination of elements compared to cotton from Egypt – each combination distinct, like a signature.
Prof Russell Frew, the geochemist who co-founded Oritain, had been studying element analysis at the University of Otago when he recognised how his research could address a major commercial problem. Fraudulent products sit on shop shelves everywhere. When they’re detected, they trigger fierce controversies, like the time in 2013, when British and Irish authorities found horse meat liberally mixed into “beef” patties. But for every headline-grabbing deception, there are countless unnoticed ones. Sugar syrup is blended into organic honey. “New Zealand lamb chops” come from Chinese feedlot animals; extra virgin olive oil is cut with cheap, inferior oil; T-shirts are stitched out of cotton grown on forced-labour farms. Labels often lie. The counterfeit food game alone is worth $49bn a year.

The central stem of a cotton stem seen under a light micrograph. Photograph: Steve Gschmeissner/Getty/Science Photo Library RF
These deceits, Frew realised, could be sniffed out by element analysis: hence Oritain. The company’s clients include well known brands such as Primark, but also industry bodies such as Cotton USA and Meat Promotion Wales. All of them are keen to avoid nasty surprises of the kind that Welspun experienced, the kind that can burn up the bottom line or sink a range of products – the low-quality supermarket steak masquerading as prime Welsh beef, say, or the pair of socks that turns out to be made with cotton from Xinjiang, in China, where factories are suspected of using captive labour.
Oritain promises to determine with 95% accuracy if a coffee bean or a cut of meat is really from the source advertised on its label. Some items are easier to analyse than others. “Tea is a good one – it’s very rich in the elements we measure,” Frew told me. “We can distinguish between two tea estates that just have a dirt road between them.” But really, he added, anything that was once grown or reared will hold signs of its origins, its chemical terroir. With enough data, it will reveal the truth about where it’s from – and the lies in the tale being told about it.
Even as a boy, Frew knew the commercial worth of an origin story. Now 54, he has the fulfilled air of a scientist who’s made it as an entrepreneur. He grew up on a sheep farm in southern New Zealand owned by his grandfather, and although the meat was useful, it was really the wool that made money. “Back then, New Zealand wool was incredibly valuable,” Frew said. “In 1953, it sold for a pound per pound.” But by the time Frew went to university in the 1980s, the industry had collapsed, in part because of the popularity of cheap, swiftly made synthetic fibres. It felt like a lesson: even a product as fine and scrupulously sourced as New Zealand wool could be left behind by the quickening pace of the global economy.
As a young researcher at the University of Otago, Frew studied how the distribution of elements varied across the world’s oceans. The instrument he most relied on was the mass spectrometer, a machine that occupied half a room and measured the levels of different elements in any sample he fed intoit. If Frew had, say, a beaker of water collected off the coast of Brazil, the spectrometer could record the specific mix of metals and salts that had washed off the land into that part of the ocean. And if he found that unique signature elsewhere, he could know that the water off Brazil had moved around the world in an ocean current. Once, when he tested some water recovered from a depth of 5,000 metres in the channel between Britain and Greenland, he found that it had started from the Weddell Sea off Antarctica.
Throughout the 90s, as Frew ran marine chemistry projects at his university, his instruments kept improving. He could buy not just new plasma spectrometers, which could test for 45 elements at once, he told me, but also better bottle-washing equipment. When I laughed, Frew said: “I’m not kidding. The new tech was basically a big bucket of ultra-pure acid, which stripped off all the trace element impurities on the glass.” From that time on, he no longer had to worry about his samples being contaminated.
In 2001, New Zealand’s ministry of fisheries contacted Frew. They’d nabbed a couple of fishing boats registered to South Korean companies, and although the crews had permits to fish off New Zealand’s east coast, the ministry suspected they’d been trawling in western waters instead. The boats’ holds were brimming with hake. Was there a way to tell where they’d been caught? “The west coast is ancient rock,” Frew told me, “and there’s a disparity in how much dust blown over from Australia settles on one coast versus the other.” As a result, the levels of lead in water and marine life vary slightly from west to east. To appraise the ratios of lead in the hake, Frew had to fly to Boston to use a lab’s instruments there. “Lead was the smoking gun,” he said. The boats had been fishing illegally in New Zealand’s western waters after all. “That turned out to be a NZ$5m prosecution.”
“The Korean fish case,” as Frew calls it, was the story he told to get funding – from his university to buy equipment for his lab, or from investors to set up his first company, Isotrace, or from more investors for Oritain, which he set up after Isotrace folded. Oritain pitched itself not as a lab with forensic tools, but as a guardian of brand integrity. If a company’s high-end coffee or single-origin chocolate were actually being made with sub-par beans, and if that ever came to light, the company’s reputation, and its bottom line, would be destroyed. In 1993, Domenico Ribatti, one of Italy’s largest olive oil producers, was sentenced to prison for cutting his extra-virgin with Turkish hazelnut oil and Argentinian sunflower-seed oil. A decade ago, Noka Chocolate went out of business not long after a blogger reported that Noka was buying another company’s chocolate, presenting it as “a tasting experience” sourced from Venezuela or Ivory Coast, and selling it for 10 times the price at Neiman Marcus. And in 2019, French police announcedthat they uncovered a scam in which 15,000 tonnes of Italian kiwifruit had been passed off as the superior French kind.

Olive oil is an often-adulterated commodity. Photograph: Kristian Septimius Krogh/Getty
Companies that fake their own wares are unusual. More commonly, raw materials get accidentally mixed up as they make their way through supply chains, or dubious third parties pass off low-grade goods as high-quality products. Oritain’s first-ever client, a New Zealand firm called Silver Fern Farms, had just this problem.
Silver Fern sources beef from farms that rear grass-fed cows in New Zealand and then sells the meat at a premium price in supermarkets in other countries, including China. But Silver Fern doesn’t deal directly with these supermarkets, of course. In between Silver Fern’s headquarters in Dunedin and a Beijing supermarket lie numerous intermediaries: firms that import packaged Silver Fern beef into China, for instance, or that distribute the beef to supermarkets in a particular region. This is, quite sensibly, the framework for most modern business – each task handled by a company that does just that and does it well.
But this multiplicity of actors also leaves room for swindlers. In China, someone was wrapping up cuts of cheap local beef in fake Silver Fern packaging and selling them to supermarkets for a plump profit. Perhaps they were importers working with Silver Fern or posing as distributors claiming to have stocks of Silver Fern beef. But the end result was the same: shoppers paying more for meat they thought was scrupulously sourced but wasn’t.
Oritain’s assignment was to conduct random checks on “Silver Fern” packaged beef bought from Chinese supermarkets, testing the meat to see if it truly originated in Silver Fern’s farms, trying to narrow down how the fakes were turning up. Silver Fern knew the hazards of letting this fraud go on unchecked. In a culture that has chosen to care, even obsess, about authenticity, phoney products can tip a company into an irreversible fall.
In its earliest days, element analysis wasn’t often used to settle questions of origin. Instead, archaeologists measured elements to piece together the diets of long-dead humans in ancient graves, and the EU’s wine databank, set up in 1991, assayed the element ratios in wine to see if it had been “sugared” or watered down. Only around the turn of the 21st century did scientists start employing these tools to discover where materials came from. The real breakthrough came in a case involving not cocoa fraud or mislaid cotton, but the unsolved murder of a little boy.
In 2001, a pedestrian on Tower Bridge spotted a body in the Thames, although in the tricky light of a September evening, he mistook it for a barrel. Then he recognised his error and rang the police. Twenty minutes later, a patrol boat arrived to scoop the body out of the water. Someone had cut the head and limbs off the boy, and the torso wore only a pair of fluorescent orange shorts. When Will O’Reilly, a detective inspector with the Metropolitan police, was called in, he recalled other bodies from the Thames that he’d seen, several mangled by boat propellers. But after he saw the torso, he realised this was something he’d never encountered before.
Postmortems supplied one gruesome mystery after another. The child, between five and seven years old, had no blood remaining in his body. His stomach was empty, as if he’d been starved for days. The body was cut up in such precise, unusual ways that the surmise of a ritual sacrifice emerged in the very first postmortem. But none of this solved the essential question of who the boy was and where he’d come from. O’Reilly had no fingerprints or dental records to examine. Running the boy’s DNA through a database showed no relatives in the UK. Gene sequences suggested that he was of northern or western African descent, but they couldn’t spell out when he had last been in that part of the world, or if he’d ever been there at all. He was so profoundly, tragically anonymous that the police investigators called him Adam, to accord him the dignity of a name.
Half a century ago, the case would have stalled there, but in early 2002, a geology professor gave the police an idea. If the elements in the soil and water of a region work their way into the plants grown there, they also work their way into our bodies when we eat the produce of those plants, or when we eat the meat of animals fed on those plants. We ingest these elements, process them, and use them to build flesh, teeth and bones. So the elements making up our bodies can tell us something about the food we’ve eaten and the land that supports us. All of us are composites of what we consume, the geologist said. Perhaps this science might reveal where Adam was from?
In Adam’s bones, the concentrations of the elements strontium and neodymium suggested that he had spent most of his life in west Africa – possibly in Nigeria, or parts of Benin or Cameroon. To refine their search, O’Reilly and two colleagues travelled through Nigeria to take samples, covering 17,000 miles in three weeks. “We’d go out to the middle of farmers’ fields and collect soils and rock,” O’Reilly told me. “We got bone samples from mortuaries. We bought bush meat being sold by the side of the road.” Of the 150 or so samples they brought back, the nearest match to Adam’s strontium-neodymium levels came from human remains from a mortuary in Benin City, in southern Nigeria. Adam had lived most of his brief life in this rough vicinity, geologists suggested. The local police began making inquiries, asking people if they knew a boy who’d travelled to England, or if they recognised his pair of bright orange shorts.
A Nigerian woman came forward claiming to have known the boy, but her story kept changing and there were serious doubts about her reliability. No definitive evidence of Adam’s real identity was ever found, and the case remains unsolved. But the element analysis that led O’Reilly to western Africa turned out to be a pioneering piece of forensic research – reviewed in scientific journals, written up in textbooks, discussed at conferences. Oritain traces its methods directly back to the “Torso in the Thames” investigation. “That was a landmark case,” Rupert Hodges, Oritain’s chief commercial officer, told me. “We adapted the forensic science that came out of that case, and out of similar cases like it.”
The life and death of Adam bore strange, sad resemblances to the corrupted supply chains that warrant Oritain’s attentions. Here was a boy who was transferred frictionlessly from one continent to another, as if reduced to a commodity – a boy whose blurred origins and unresolved end were reminders that, while our globalised world pretends to be small and transparent, it is in fact huge and murky, with plenty of room to hide.
When Welspun came to Oritain, in the wake of its scandal, it was already too late to detect precisely where the mistakes had been made. The inferior cotton had passed through Welspun’s factories, been made into bedsheets, sold, and been slept upon. What Welspun wanted was to reassure its retailers that such a debacle couldn’t happen again. “They basically said to us: ‘How do we get back into the good graces of these big-box stores?’” Hodges told me.
Hodges is a bespectacled Englishman, a former banker who talks torrentially fast; more than once, while listening to our recorded conversations, I checked to see if I was accidentally playing them at 2x. Hodges joined Oritain in 2014, going from managing 1,000 people to running a London office of one. When Welspun ran into trouble two years later, Oritain was hired to conduct regular audits on the company’s supply chain.
To do that, though, Oritain needed to know the elemental signatures of Welspun’s cotton. So Oritain’s staff began by travelling to Egypt, fanning out across all the farms that supplied Welspun, picking “master samples” of cotton, and placing them into clear plastic bags. Then they did the same in the US, Australia, and every other country from which Welspun sourced cotton. The entire effort took six months, Hodges said, and resulted in tens of thousands of master samples.
Using these for comparison, Oritain could authenticate Welspun’s bales, yarn and fabric to make certain that no one was swapping in one kind of cotton for another. Shuttling between the various, far-flung tiers of suppliers, shippers, traders and factories, Oritain sampled and tested and sampled and tested, to ensure that every bit of cotton showed the elemental signatures of its origin – that cotton claiming to be from an Egyptian farm really was from that Egyptian farm. It was a way to make the supply chain more watertight, more reliable. In May 2021, Target agreed to start stocking Welspun products again.
Oritain has an ever-expanding library of master samples – verified specimens of beef, apples, cotton, wool and other commodities taken from their source farms, orchards or abattoirs. Hundreds of thousands of such samples rest in clear plastic bags in a warehouse in the basement of Oritain’s office building in Dunedin, in southern New Zealand....